Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Science ; 381(6660): 851-857, 2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37616368

RESUMO

The intestinal microbiota regulates mammalian lipid absorption, metabolism, and storage. We report that the microbiota reprograms intestinal lipid metabolism in mice by repressing the expression of long noncoding RNA (lncRNA) Snhg9 (small nucleolar RNA host gene 9) in small intestinal epithelial cells. Snhg9 suppressed the activity of peroxisome proliferator-activated receptor γ (PPARγ)-a central regulator of lipid metabolism-by dissociating the PPARγ inhibitor sirtuin 1 from cell cycle and apoptosis protein 2 (CCAR2). Forced expression of Snhg9 in the intestinal epithelium of conventional mice impaired lipid absorption, reduced body fat, and protected against diet-induced obesity. The microbiota repressed Snhg9 expression through an immune relay encompassing myeloid cells and group 3 innate lymphoid cells. Our findings thus identify an unanticipated role for a lncRNA in microbial control of host metabolism.


Assuntos
Microbioma Gastrointestinal , Intestinos , Metabolismo dos Lipídeos , PPAR gama , RNA Longo não Codificante , Sirtuína 1 , Animais , Camundongos , Imunidade Inata , Metabolismo dos Lipídeos/genética , Linfócitos/imunologia , PPAR gama/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Sirtuína 1/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Células Mieloides/imunologia , Intestinos/metabolismo , Intestinos/microbiologia , Tecido Adiposo/microbiologia , Humanos
2.
Science ; 374(6568): eabe6723, 2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34735226

RESUMO

A diverse group of antimicrobial proteins (AMPs) helps protect the mammalian intestine from varied microbial challenges. We show that small proline-rich protein 2A (SPRR2A) is an intestinal antibacterial protein that is phylogenetically unrelated to previously discovered mammalian AMPs. In this study, SPRR2A was expressed in Paneth cells and goblet cells and selectively killed Gram-positive bacteria by disrupting their membranes. SPRR2A shaped intestinal microbiota composition, restricted bacterial association with the intestinal surface, and protected against Listeria monocytogenes infection. SPRR2A differed from other intestinal AMPs in that it was induced by type 2 cytokines produced during helminth infection. Moreover, SPRR2A protected against helminth-induced bacterial invasion of intestinal tissue. Thus, SPRR2A is a distinctive AMP triggered by type 2 immunity that protects the intestinal barrier during helminth infection.


Assuntos
Proteínas Ricas em Prolina do Estrato Córneo/metabolismo , Microbioma Gastrointestinal , Bactérias Gram-Positivas/fisiologia , Mucosa Intestinal/metabolismo , Intestinos/microbiologia , Nematospiroides dubius , Infecções por Strongylida/imunologia , Animais , Carga Bacteriana , Membrana Celular/metabolismo , Permeabilidade da Membrana Celular , Proteínas Ricas em Prolina do Estrato Córneo/genética , Citocinas/metabolismo , Suscetibilidade a Doenças , Células Caliciformes/metabolismo , Humanos , Imunidade Inata , Mucosa Intestinal/microbiologia , Listeria monocytogenes/fisiologia , Listeriose/microbiologia , Camundongos , Viabilidade Microbiana , Celulas de Paneth/metabolismo , Proteínas Citotóxicas Formadoras de Poros/genética , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Infecções por Strongylida/metabolismo , Infecções por Strongylida/microbiologia
3.
Cell ; 184(16): 4154-4167.e12, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34324837

RESUMO

Environmental light cycles entrain circadian feeding behaviors in animals that produce rhythms in exposure to foodborne bacteria. Here, we show that the intestinal microbiota generates diurnal rhythms in innate immunity that synchronize with feeding rhythms to anticipate microbial exposure. Rhythmic expression of antimicrobial proteins was driven by daily rhythms in epithelial attachment by segmented filamentous bacteria (SFB), members of the mouse intestinal microbiota. Rhythmic SFB attachment was driven by the circadian clock through control of feeding rhythms. Mechanistically, rhythmic SFB attachment activated an immunological circuit involving group 3 innate lymphoid cells. This circuit triggered oscillations in epithelial STAT3 expression and activation that produced rhythmic antimicrobial protein expression and caused resistance to Salmonella Typhimurium infection to vary across the day-night cycle. Thus, host feeding rhythms synchronize with the microbiota to promote rhythms in intestinal innate immunity that anticipate exogenous microbial exposure.


Assuntos
Relógios Circadianos/fisiologia , Ritmo Circadiano/fisiologia , Microbioma Gastrointestinal , Imunidade Inata , Animais , Peptídeos Catiônicos Antimicrobianos/metabolismo , Aderência Bacteriana , Adesão Celular , Células Epiteliais/microbiologia , Comportamento Alimentar , Intestino Delgado/microbiologia , Intestino Delgado/ultraestrutura , Linfócitos/metabolismo , Camundongos Endogâmicos C57BL , Muramidase/metabolismo , Proteínas Associadas a Pancreatite/metabolismo , Fator de Transcrição STAT3/metabolismo , Salmonelose Animal/microbiologia , Transdução de Sinais
4.
Cell Host Microbe ; 27(3): 376-388.e8, 2020 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-32075741

RESUMO

During short-lived perturbations, such as inflammation, the gut microbiota exhibits resilience and reverts to its original configuration. Although microbial access to the micronutrient iron is decreased during colitis, pathogens can scavenge iron by using siderophores. How commensal bacteria acquire iron during gut inflammation is incompletely understood. Curiously, the human commensal Bacteroides thetaiotaomicron does not produce siderophores but grows under iron-limiting conditions using enterobacterial siderophores. Using RNA-seq, we identify B. thetaiotaomicron genes that were upregulated during Salmonella-induced gut inflammation and were predicted to be involved in iron uptake. Mutants in the xusABC locus (BT2063-2065) were defective for xenosiderophore-mediated iron uptake in vitro. In the normal mouse gut, the XusABC system was dispensable, while a xusA mutant colonized poorly during colitis. This work identifies xenosiderophore utilization as a critical mechanism for B. thetaiotaomicron to sustain colonization during inflammation and suggests a mechanism of how interphylum iron metabolism contributes to gut microbiota resilience.


Assuntos
Bacteroides thetaiotaomicron/metabolismo , Colite/microbiologia , Enterobacteriaceae/genética , Microbioma Gastrointestinal , Ferro/metabolismo , Sideróforos/genética , Animais , Bacteroides thetaiotaomicron/genética , Feminino , Genes Bacterianos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA-Seq , Simbiose
5.
Science ; 365(6460): 1428-1434, 2019 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-31604271

RESUMO

Circadian rhythmicity is a defining feature of mammalian metabolism that synchronizes metabolic processes to day-night light cycles. Here, we show that the intestinal microbiota programs diurnal metabolic rhythms in the mouse small intestine through histone deacetylase 3 (HDAC3). The microbiota induced expression of intestinal epithelial HDAC3, which was recruited rhythmically to chromatin, and produced synchronized diurnal oscillations in histone acetylation, metabolic gene expression, and nutrient uptake. HDAC3 also functioned noncanonically to coactivate estrogen-related receptor α, inducing microbiota-dependent rhythmic transcription of the lipid transporter gene Cd36 and promoting lipid absorption and diet-induced obesity. Our findings reveal that HDAC3 integrates microbial and circadian cues for regulation of diurnal metabolic rhythms and pinpoint a key mechanism by which the microbiota controls host metabolism.


Assuntos
Ritmo Circadiano , Células Epiteliais/metabolismo , Microbioma Gastrointestinal , Histona Desacetilases/metabolismo , Intestino Delgado/metabolismo , Acetilação , Animais , Antígenos CD36/metabolismo , Cromatina/metabolismo , Colo , Dieta Hiperlipídica , Vida Livre de Germes , Intestino Delgado/citologia , Síndrome do Jet Lag , Metabolismo dos Lipídeos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/metabolismo , Receptores de Estrogênio/metabolismo , Receptor ERRalfa Relacionado ao Estrogênio
7.
Nature ; 553(7687): 208-211, 2018 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-29323293

RESUMO

Inflammatory diseases of the gastrointestinal tract are frequently associated with dysbiosis, characterized by changes in gut microbial communities that include an expansion of facultative anaerobic bacteria of the Enterobacteriaceae family (phylum Proteobacteria). Here we show that a dysbiotic expansion of Enterobacteriaceae during gut inflammation could be prevented by tungstate treatment, which selectively inhibited molybdenum-cofactor-dependent microbial respiratory pathways that are operational only during episodes of inflammation. By contrast, we found that tungstate treatment caused minimal changes in the microbiota composition under homeostatic conditions. Notably, tungstate-mediated microbiota editing reduced the severity of intestinal inflammation in mouse models of colitis. We conclude that precision editing of the microbiota composition by tungstate treatment ameliorates the adverse effects of dysbiosis in the inflamed gut.


Assuntos
Colite/tratamento farmacológico , Colite/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Intestinos/efeitos dos fármacos , Intestinos/microbiologia , Anaerobiose/efeitos dos fármacos , Animais , Respiração Celular/efeitos dos fármacos , Disbiose/tratamento farmacológico , Disbiose/microbiologia , Enterobacteriaceae/efeitos dos fármacos , Enterobacteriaceae/crescimento & desenvolvimento , Enterobacteriaceae/metabolismo , Feminino , Inflamação/tratamento farmacológico , Inflamação/microbiologia , Inflamação/patologia , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Intestinos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Molibdênio/metabolismo , Compostos de Tungstênio/farmacologia , Compostos de Tungstênio/uso terapêutico
8.
Cell Host Microbe ; 23(1): 54-64.e6, 2018 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-29276172

RESUMO

During Salmonella-induced gastroenteritis, mucosal inflammation creates a niche that favors the expansion of the pathogen population over the microbiota. Here, we show that Salmonella Typhimurium infection was accompanied by dysbiosis, decreased butyrate levels, and substantially elevated lactate levels in the gut lumen. Administration of a lactate dehydrogenase inhibitor blunted lactate production in germ-free mice, suggesting that lactate was predominantly of host origin. Depletion of butyrate-producing Clostridia, either through oral antibiotic treatment or as part of the pathogen-induced dysbiosis, triggered a switch in host cells from oxidative metabolism to lactate fermentation, increasing both lactate levels and Salmonella lactate utilization. Administration of tributyrin or a PPARγ agonist diminished host lactate production and abrogated the fitness advantage conferred on Salmonella by lactate utilization. We conclude that alterations of the gut microbiota, specifically a depletion of Clostridia, reprogram host metabolism to perform lactate fermentation, thus supporting Salmonella infection.


Assuntos
Clostridium/crescimento & desenvolvimento , Disbiose/microbiologia , Gastroenterite/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Mucosa Intestinal/microbiologia , Ácido Láctico/metabolismo , Salmonella typhimurium/metabolismo , Animais , Antibacterianos/farmacologia , Ácido Butírico/metabolismo , Feminino , Fermentação , Gastroenterite/patologia , L-Lactato Desidrogenase/antagonistas & inibidores , Masculino , Camundongos , Camundongos Endogâmicos C57BL , PPAR gama/agonistas , Infecções por Salmonella/patologia , Salmonella typhimurium/crescimento & desenvolvimento , Triglicerídeos/farmacologia
9.
Cell Host Microbe ; 22(3): 291-301.e6, 2017 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-28844888

RESUMO

The mucosal inflammatory response induced by Salmonella serovar Typhimurium creates a favorable niche for this gut pathogen. Conventional wisdom holds that S. Typhimurium undergoes an incomplete tricarboxylic acid (TCA) cycle in the anaerobic mammalian gut. One change during S. Typhimurium-induced inflammation is the production of oxidized compounds by infiltrating neutrophils. We show that inflammation-derived electron acceptors induce a complete, oxidative TCA cycle in S. Typhimurium, allowing the bacteria to compete with the microbiota for colonization. A complete TCA cycle facilitates utilization of the microbiota-derived fermentation product succinate as a carbon source. S. Typhimurium succinate utilization genes contribute to efficient colonization in conventionally raised mice, but provide no growth advantage in germ-free mice. Mono-association of gnotobiotic mice with Bacteroides, a major succinate producer, restores succinate utilization in S. Typhimurium. Thus, oxidative central metabolism enables S. Typhimurium to utilize a variety of carbon sources, including microbiota-derived succinate.


Assuntos
Bactérias/metabolismo , Bacteroides/metabolismo , Colite/microbiologia , Microbioma Gastrointestinal , Infecções por Salmonella/microbiologia , Salmonella typhimurium/metabolismo , Ácido Succínico/metabolismo , Animais , Bactérias/genética , Bactérias/isolamento & purificação , Bacteroides/genética , Bacteroides/isolamento & purificação , Ciclo do Ácido Cítrico , Colite/metabolismo , Humanos , Mucosa Intestinal/metabolismo , Intestinos/microbiologia , Camundongos , Camundongos Endogâmicos CBA , Estresse Oxidativo , Infecções por Salmonella/metabolismo , Salmonella typhimurium/genética
10.
Cell Host Microbe ; 21(2): 208-219, 2017 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-28182951

RESUMO

Intestinal inflammation is frequently associated with an alteration of the gut microbiota, termed dysbiosis, which is characterized by a reduced abundance of obligate anaerobic bacteria and an expansion of facultative Proteobacteria such as commensal E. coli. The mechanisms enabling the outgrowth of Proteobacteria during inflammation are incompletely understood. Metagenomic sequencing revealed bacterial formate oxidation and aerobic respiration to be overrepresented metabolic pathways in a chemically induced murine model of colitis. Dysbiosis was accompanied by increased formate levels in the gut lumen. Formate was of microbial origin since no formate was detected in germ-free mice. Complementary studies using commensal E. coli strains as model organisms indicated that formate dehydrogenase and terminal oxidase genes provided a fitness advantage in murine models of colitis. In vivo, formate served as electron donor in conjunction with oxygen as the terminal electron acceptor. This work identifies bacterial formate oxidation and oxygen respiration as metabolic signatures for inflammation-associated dysbiosis.


Assuntos
Disbiose/microbiologia , Escherichia coli/metabolismo , Formiatos/metabolismo , Inflamação/microbiologia , Animais , Colite/microbiologia , Modelos Animais de Doenças , Feminino , Microbioma Gastrointestinal , Intestinos/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Proteobactérias/metabolismo
11.
Proc Natl Acad Sci U S A ; 114(7): E1196-E1204, 2017 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-28137874

RESUMO

Class-switch recombination (CSR) alters the Ig isotype to diversify antibody effector functions. IgD CSR is a rare event, and its regulation is poorly understood. We report that deficiency of 53BP1, a DNA damage-response protein, caused age-dependent overproduction of secreted IgD resulting from increased IgD CSR exclusively within B cells of mucosa-associated lymphoid tissues. IgD overproduction was dependent on activation-induced cytidine deaminase, hematopoietic MyD88 expression, and an intact microbiome, against which circulating IgD, but not IgM, was reactive. IgD CSR occurred via both alternative nonhomologous end-joining and homologous recombination pathways. Microbiota-dependent IgD CSR also was detected in nasal-associated lymphoid tissue of WT mice. These results identify a pathway, present in WT mice and hyperactivated in 53BP1-deficient mice, by which microbiota signal via Toll-like receptors to elicit IgD CSR.


Assuntos
Switching de Imunoglobulina , Imunoglobulina D/imunologia , Tecido Linfoide/imunologia , Microbiota/imunologia , Mucosa/imunologia , Animais , Citidina Desaminase/genética , Citidina Desaminase/imunologia , Citidina Desaminase/metabolismo , Reparo do DNA por Junção de Extremidades , Feminino , Imunoglobulina D/genética , Imunoglobulina D/metabolismo , Tecido Linfoide/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microbiota/genética , Mucosa/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/imunologia , Fator 88 de Diferenciação Mieloide/metabolismo , Recombinação Genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/deficiência , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/imunologia
12.
Genes Dev ; 26(12): 1306-11, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22713870

RESUMO

For all newborn mammals, mother's milk is the perfect nourishment, crucial for their postnatal development. Here we report that, unexpectedly, maternal western diet consumption in mice causes the production of toxic milk that contains excessive long chain and saturated fatty acids, which triggers ceramide accumulation and inflammation in the nursing neonates, manifested as alopecia. This neonatal toxicity requires Toll-like-receptors (TLR), but not gut microbiota, because TLR2/4 deletion or TLR4 inhibition confers resistance, whereas germ-free mice remain sensitive. These findings unravel maternal western diet-induced inflammatory milk secretion as a novel aspect of the metabolic syndrome at the maternal offspring interface.


Assuntos
Dieta/efeitos adversos , Inflamação/patologia , Leite/toxicidade , Mães , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo , Ocidente , Animais , Animais Recém-Nascidos , Ceramidas/metabolismo , Ácidos Graxos/metabolismo , Feminino , Deleção de Genes , Vida Livre de Germes/efeitos dos fármacos , Lactação/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Leite/metabolismo , Gravidez , Receptor 4 Toll-Like/antagonistas & inibidores
13.
Proc Natl Acad Sci U S A ; 108(42): 17390-5, 2011 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-21960441

RESUMO

RIG-I-like receptors (RLRs) activate host innate immune responses against virus infection through recruiting the mitochondrial adaptor protein MAVS (also known as IPS1, VISA, or CARDIF). Here we show that MAVS also plays a pivotal role in maintaining intestinal homeostasis. We found that MAVS knockout mice developed more severe mortality and morbidity than WT animals in an experimental model of colitis. Bone marrow transplantation experiments revealed that MAVS in cells of nonhematopoietic origin plays a dominant role in the protection against colitis. Importantly, RNA species derived from intestinal commensal bacteria activate the RIG-I-MAVS pathway to induce the production of multiple cytokines and antimicrobial peptides, including IFN-ß and RegIIIγ. These results unveil a previously unexplored role of MAVS in monitoring intestinal commensal bacteria and maintaining tissue homeostasis.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/imunologia , Colite/imunologia , Colite/prevenção & controle , Proteínas Adaptadoras de Transdução de Sinal/deficiência , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Transplante de Medula Óssea/imunologia , Colite/induzido quimicamente , Proteína DEAD-box 58 , RNA Helicases DEAD-box/imunologia , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Feminino , Imunidade Inata , Intestinos/imunologia , Intestinos/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/deficiência , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/imunologia , RNA Bacteriano/imunologia
14.
Proc Natl Acad Sci U S A ; 108(21): 8743-8, 2011 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-21555560

RESUMO

The mammalian gastrointestinal tract harbors thousands of bacterial species that include symbionts as well as potential pathogens. The immune responses that limit access of these bacteria to underlying tissue remain poorly defined. Here we show that γδ intraepithelial lymphocytes (γδ IEL) of the small intestine produce innate antimicrobial factors in response to resident bacterial "pathobionts" that penetrate the intestinal epithelium. γδ IEL activation was dependent on epithelial cell-intrinsic MyD88, suggesting that epithelial cells supply microbe-dependent cues to γδ IEL. Finally, γδ T cells protect against invasion of intestinal tissues by resident bacteria specifically during the first few hours after bacterial encounter, indicating that γδ IEL occupy a unique temporal niche among intestinal immune defenses. Thus, γδ IEL detect the presence of invading bacteria through cross-talk with neighboring epithelial cells and are an essential component of the hierarchy of immune defenses that maintain homeostasis with the intestinal microbiota.


Assuntos
Homeostase/imunologia , Interações Hospedeiro-Patógeno/imunologia , Mucosa Intestinal/imunologia , Linfócitos/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/fisiologia , Animais , Bactérias/imunologia , Comunicação Celular/imunologia , Células Epiteliais , Imunidade Inata , Metagenoma/imunologia , Camundongos , Camundongos Knockout
15.
Cell Host Microbe ; 6(2): 187-96, 2009 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-19683684

RESUMO

Toxoplasma gondii is a universally distributed pathogen that infects over one billion people worldwide. Host resistance to this protozoan parasite depends on a Th1 immune response with potent production of the cytokines interleukin-12 and interferon gamma. Although Toll-like receptor 11 (TLR11) plays a major role in controlling Th1 immunity to this pathogen in mice, this innate immune receptor is nonfunctional in humans, and the mechanisms of TLR11-independent sensing of T. gondii remain elusive. Here, we show that oral infection by T. gondii triggers a TLR11-independent but MyD88-dependent Th1 response that is impaired in TLR2xTLR4 double knockout and TLR9 single knockout mice. These mucosal innate and adaptive immune responses to T. gondii rely on the indirect stimulation of dendritic cells by normal gut microflora. Thus, our results reveal that gut commensal bacteria can serve as molecular adjuvants during parasitic infection, providing indirect immunostimulation that protects against T. gondii in the absence of TLR11.


Assuntos
Bactérias/imunologia , Células Dendríticas/imunologia , Trato Gastrointestinal/microbiologia , Toxoplasma/imunologia , Toxoplasmose Animal/imunologia , Animais , Citocinas/biossíntese , Humanos , Leucócitos Mononucleares/imunologia , Camundongos , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/deficiência , Fator 88 de Diferenciação Mieloide/imunologia , Receptor 2 Toll-Like/deficiência , Receptor 2 Toll-Like/imunologia , Receptor 4 Toll-Like/deficiência , Receptor 4 Toll-Like/imunologia , Receptor Toll-Like 9/deficiência , Receptor Toll-Like 9/imunologia , Toxoplasmose Animal/parasitologia , Toxoplasmose Animal/patologia
16.
J Immunol ; 182(5): 3047-54, 2009 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-19234201

RESUMO

The intestinal mucosal surface is in direct contact with a vast beneficial microbiota. The symbiotic nature of this relationship is threatened when the surface epithelium is injured, yet little is known about how mucosal surfaces maintain homeostasis with commensal microbes following damage. Gammadelta intraepithelial lymphocytes (gammadelta IEL) reside at the gut epithelial surface, where they stimulate mucosal healing following acute injury. A genome-wide analysis of the gammadelta IEL response to dextran sulfate sodium-induced colonic damage revealed induction of a complex transcriptional program, including coordinate regulation of cytoprotective, immunomodulatory, and antibacterial factors. Studies in germfree mice demonstrated that commensal microbiota regulate key components of this transcriptional program, thus revealing a dialogue between commensal bacteria and gammadelta IEL in injured epithelia. Analysis of TCRdelta-deficient mice indicated that gammadelta T cells are essential for controlling mucosal penetration of commensal bacteria immediately following dextran sulfate sodium-induced damage, suggesting that a key function of gammadelta IEL is to maintain host-microbial homeostasis following acute mucosal injury. Taken together, these findings disclose a reciprocal relationship between gammadelta T cells and intestinal microbiota that promotes beneficial host-microbial relationships in the intestine.


Assuntos
Comunicação Celular/imunologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Subpopulações de Linfócitos/imunologia , Subpopulações de Linfócitos/microbiologia , Receptores de Antígenos de Linfócitos T gama-delta/biossíntese , Animais , Colo/efeitos dos fármacos , Colo/imunologia , Colo/microbiologia , Colo/patologia , Sulfato de Dextrana/toxicidade , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/imunologia , Células Epiteliais/microbiologia , Células Epiteliais/patologia , Homeostase/efeitos dos fármacos , Homeostase/imunologia , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/patologia , Subpopulações de Linfócitos/efeitos dos fármacos , Subpopulações de Linfócitos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Análise de Sequência com Séries de Oligonucleotídeos , Receptores de Antígenos de Linfócitos T gama-delta/deficiência , Receptores de Antígenos de Linfócitos T gama-delta/genética
17.
Proc Natl Acad Sci U S A ; 105(52): 20858-63, 2008 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-19075245

RESUMO

The intestinal epithelium is in direct contact with a vast microbiota, yet little is known about how epithelial cells defend the host against the heavy bacterial load. To address this question we studied Paneth cells, a key small intestinal epithelial lineage. We found that Paneth cells directly sense enteric bacteria through cell-autonomous MyD88-dependent toll-like receptor (TLR) activation, triggering expression of multiple antimicrobial factors. Paneth cells were essential for controlling intestinal barrier penetration by commensal and pathogenic bacteria. Furthermore, Paneth cell-intrinsic MyD88 signaling limited bacterial penetration of host tissues, revealing a role for epithelial MyD88 in maintaining intestinal homeostasis. Our findings establish that gut epithelia actively sense enteric bacteria and play an essential role in maintaining host-microbial homeostasis at the mucosal interface.


Assuntos
Bactérias/imunologia , Translocação Bacteriana/imunologia , Interações Hospedeiro-Patógeno/imunologia , Fator 88 de Diferenciação Mieloide/imunologia , Celulas de Paneth/imunologia , Receptores Toll-Like/imunologia , Animais , Anti-Infecciosos/imunologia , Homeostase/imunologia , Camundongos , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/genética , Celulas de Paneth/microbiologia , Receptores Toll-Like/genética
19.
Science ; 313(5790): 1126-30, 2006 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-16931762

RESUMO

The mammalian intestine harbors complex societies of beneficial bacteria that are maintained in the lumen with minimal penetration of mucosal surfaces. Microbial colonization of germ-free mice triggers epithelial expression of RegIIIgamma, a secreted C-type lectin. RegIIIgamma binds intestinal bacteria but lacks the complement recruitment domains present in other microbe-binding mammalian C-type lectins. We show that RegIIIgamma and its human counterpart, HIP/PAP, are directly antimicrobial proteins that bind their bacterial targets via interactions with peptidoglycan carbohydrate. We propose that these proteins represent an evolutionarily primitive form of lectin-mediated innate immunity, and that they reveal intestinal strategies for maintaining symbiotic host-microbial relationships.


Assuntos
Antígenos de Neoplasias/metabolismo , Bactérias/imunologia , Biomarcadores Tumorais/metabolismo , Imunidade Inata , Intestino Delgado/microbiologia , Lectinas Tipo C/metabolismo , Celulas de Paneth/metabolismo , Peptidoglicano/metabolismo , Proteínas/metabolismo , Animais , Antígenos de Neoplasias/farmacologia , Bactérias/crescimento & desenvolvimento , Biomarcadores Tumorais/farmacologia , Quitina/metabolismo , Contagem de Colônia Microbiana , Vida Livre de Germes , Bactérias Gram-Positivas/imunologia , Bactérias Gram-Positivas/metabolismo , Homeostase , Humanos , Imunidade nas Mucosas , Ligantes , Listeria monocytogenes/ultraestrutura , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas Associadas a Pancreatite , Celulas de Paneth/imunologia , Peptidoglicano/química , Estrutura Terciária de Proteína , Proteínas/genética , Proteínas/farmacologia , Proteínas Recombinantes/metabolismo , Vesículas Secretórias/metabolismo , Simbiose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA